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Partition functions and Metropolis-type evolution rules for surface growth models with constraints
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We study dynamical scaling properties of the surface growth model with the Metropolis-type evolution rule

from a partition functionZ5($h(rW)%)h5hmin

hmax 1
2 (11znh), wherez is a fugacity-like quantity andnh is the number

of sites with heighth in a surface configuration$h(rW)%. The partition function describes a 2-particle correlated
growth model whenz521 and a self-flattening growth model whenz50. For one-dimensional equilibrium
surfaces, the scaling properties forz>21 exceptz51 are all one phase with roughness exponenta51/3 and
growth exponentb.0.22. For the growing~eroding! surfaces, there exists a phase transition atz50 from the
grooved phase (a51) for 21<z,0 to the ordinary Kardar-Parisi-Zhang phase (a51/2) for z.0.
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In equilibrium statistical mechanics, the partition functio
plays the decisive role in finding the macroscopic proper
of thermodynamic systems. In contrast, successful theo
based on a partition function for nonthermodynamic syste
such as surface growth@1#, are scarce except for Edward
Wilkinson-type thermal roughening@2,3#. In this paper, we
show that some of the recently developed growth mod
with global constraints@4–6# can be unified through a part
tion function. By using a Metropolis-type evolution rule e
tablished directly from the partition function, scaling prope
ties for equilibrium surfaces of the models are shown
belong to the same universality class and a sharp phase
sition is shown to exist for the growing~eroding! surfaces.
Our study is important because several different grow
models can be explained from one partition function.

Dynamical scaling theories for fluctuating surfaces un
thermal white noise have been studied extensively beca
of the theoretical and experimental importance of the lo
time, large scale surface morphology@1#. The dynamical
scaling hypothesis used in these studies is

W5La f ~ t/LzW!, ~1!

whereW is a root-mean-square fluctuation of surface heigh
a andzW are the roughness and dynamic exponents, res
tively. In the hypothesis,W(t;L) increases astb initially ( t
!LzW) and saturates toLa for t@LzW, where b5a/zW .
Most of these theories have used the Langevin-type eq
tions and the discrete growth models@1#, which originate
from the evolution rules considering only local surface m
phology.

Recently, several surface growth models in which glo
or nonlocal constraints are taken into consideration h
been suggested and studied. Among them, the first sugge
model was theQ-mer-type surface growth model@6#, where
particles can deposit and evaporate only in theQ-mer form
of equal heights. The surface widthW of one-dimensional
~1D! equilibrium Q-mer models with the system sizeL di-
verges asW;La with a.1/3 instead of the conventiona
random-walk valuea51/2. TheQ-mer model is related to
Q-visited random walks~RWs! and the localization model
for the Lifschitz tail @6#. To resolve the sector~or initial-
morphology dependent! problems@6,7# in theQ-mer models,
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the Q-particle ~QP! correlated model@4# was subsequently
suggested, which is believed to have the true one-to-one
respondence toQ-visited RWs. Another kind of model with
the global constraints is the self-flattening~SF! surface
growth @5#, in which the growth~erosion! rate at the globally
highest~lowest! site is reduced or suppressed. The 1D eq
librium SF model also hasa51/3. The 1D equilibrium SF
model can be mapped onto a self-attracting walk@8# and to
the survival of random walks with static traps@9#, even
though the higher-dimensional SF models cannot be map
directly to walk models@5#. In this paper, we show that thes
growth models with global constraints can be unified throu
the unique form of a partition function~or generating func-
tion! Z.

We think about the surface configurations described
terms of integer height variables$h(rW)% on aD-dimensional
hypercubic lattice. They are subject to the restricted solid-
solid ~RSOS! constraint,h(rW1êi)2h(rW)50,61 with êi a
primitive lattice vector in thei th direction (i 51, . . . ,D).
ThenZ which unifies the growth models@5,6# is

Z5 (
$h(rW)%

)
h5hmin

hmax 1

2
~11znh!, ~2!

where the summation is over all possible surface height c
figurations with the RSOS constraint, andnh is the number
of sitesrW which satisfy the relationh(rW,t)5h in the configu-
ration$h(rW)%. Of course,z in Eq. ~2! is an analog offugacity
or chemical potentialin equilibrium statistical mechanics
In z→0 limit, each term inside the product inZ is equal
to 1/2 if nhÞ0 or to 1 otherwise. ThenZ(z50)
5($h(rW)%exp(2bS) with S5hmax2hmin11 and b5 ln 2.
Z(z50) is exactly the same as the partition functionZSF of
the SF growth model@5#. Whenz521, Z becomes nonzero
only when allnh are even.Z with z521 is exactly equal to
Z of the 2-particle~2P! correlated growth model@4# because
only the height configurations obeying the global evenn
conservation law have nonzero contribution toZ. Of course,
the ordinary RSOS-type behavior@10# recovers whenz51.

The dynamical scaling properties for the 2P~QP! growth
models (z521) @4# and SF growth model (z50) @5# are as
©2003 The American Physical Society08-1
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follows. For the equilibrium surfaces when the depositi
attempt probabilityp is the same as the evaporation probab
ity q (p5q51/2), a51/3 for the both 1D QP and SF mod
els. The growth exponentb has been found to beb50.22
~or 2/9! for the SF model andb.0.2 for the 2P model. Fo
z51, the scaling behavior should be the ordinary RSOS
havior with a51/2 andb51/4 @3# for equilibrium surfaces.
The scaling property of the growing (p512q.1/2) or
eroding (q512p.1/2) surface in the QP model is quit
different from the equilibrium surfaces@4#. The growing
~eroding! surface for the QP model (z521) shows the
grooved structure witha51 @4#. In contrast, the SF mode
still shows the ordinary RSOS@10# behavior witha51/2
andb51/3.

So the natural interesting questions concerning the e
librium surfaces are the scaling properties of the models w
21,z,0, 0,z,1, andz.1. From the properties of the
QP ~2P! model (z521) and SF model (z50), we easily
expect that all the models with21<z<0 have the same
phase witha51/3. However, the scaling property for 0,z
,1 and z.1 cannot be predicted easily from the know
results of the SF and 2P models. It is also very interestin
know at what value ofz the transition from the grooved
phase to the normal RSOS behavior occurs for the grow
~eroding! surfaces.

It is thus the purpose of our paper to study the dynam
scaling properties of the model withz>21 by using the
Metropolis-type evolution rules based on the generali
partition function~2!. From this study, we show that all o
the phases of equilibrium (p5q51/2) surfaces forz>21
are the same as those witha51/3 andb50.22(2/9), except
for z51. An analytic explanation based on the partiti
function~2! is given for the existence of the same phase w
a51/3. We also show that the growing~eroding! surfaces
for 21<z,0 are the grooved phases (a51), whereas the
growing ~eroding! surfaces forz>0 show the ordinary
RSOS scaling behavior (a51/2).

We now explain the Metropolis-type evolution rule bas
on the partition function~2! in detail. First evaluate the
weight

w„$h~rW !%…5 )
h5hmin

hmax 1

2
~11znh! ~3!

in a given height configuration$h(rW)%. Next choose a col-
umn xW randomly. Then decide the deposition attempth(xW )
→h(xW )11 with probability p or the evaporation attemp
h(xW )→h(xW )21 with probability q. Then calculate
w„$h8(rW)%… for the new configuration$h8(rW)% from the de-
cided deposition~evaporation! process. Then the acceptan
parameterP is defined byP[w„$h8(rW)%…/w„$h(rW)%…. If P
>1, then the new configuration is accepted unconditiona
If P,1, the new configuration is accepted only whenP
>R, where R is a generated random number with 0,R
,1. Any new configuration is rejected if it would result i
the violation of the RSOS constraint.
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By using the Metropolis-type evolution rule, we perfor
numerical simulations, starting from a flat surface on the
substrate of linear sizeL with the lateral periodic boundary
condition. To measure the surface fluctuationW of Eq. ~1!
for a given z, we run simulations forL525, . . . ,213 and
average the data forW over at least 300 independen
samples.

First, we show the results for the equilibrium surfac
(p5q). In order to extract the saturation-regime proper
the data forW for t@LzW are analyzed to obtainWs(L)
5W(t@LzW). For the estimation of exponenta, we intro-
duce effective exponents

ae f f~L !5 ln@Ws~mL!/Ws~L !#/ ln m, ~4!

wherem is an arbitrary constant~here, we setm52). Effec-
tive exponents forz521, 20.5, 0, 0.5, and 1.5 are obtaine
by using systems with sizes up toL5210. The results are
plotted in Fig. 1. For small system sizes up toL527, our
data show relatively large corrections to scaling as expec
However, the asymptotic estimates seem to be indepen
of z. We estimatea.1/3 for all z in the systems withL
>28. Since the model withz51 is exactly equal to the
ordinary RSOS model witha51/2, we also investigate the
models withz close to 1. For this,ae f f for z50.9 andz
51.1 is evaluated by using systems up toL5213. The results
are displayed in the inset of Fig. 1. We also find large c
rections to the scaling up toL5210, but find a.1/3 for L
>211. Since the model based on the partition function~2!
cannot be physically defined forz,21, the result in Fig. 1
strongly supports the fact that all the equilibrium surfaces
z>21, except for z51, have the same phase witha
51/3. In Fig. 2, we also display the early-time (t!LzW)
dynamical behavior for the equilibrium surfaces for the sa
z’s in Fig. 1. The data in Fig. 2 are obtained from the sim
lation in the system withL5212. The growth exponentb is
obtained by a simple fitting of the relationW.tb to the data.

FIG. 1. Effective exponentsae f f versus 1/L for the equilibrium
surfaces of the model withz521,20.5,0,0.5,1.5. Used system
sizes areL525,26, . . . ,210. All data for various values ofz con-
verge to 1/3 rather nicely in theL→` limit. The inset shows the
same plot forz50.9 and 1.1. The data in the inset are shown for
system sizesL527,28, . . . ,213.
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Our estimate isb50.22(1).2/9 regardless of the valuez.
The best estimation ofb for the 2P model (z521) from
Ref. @4# wasb.0.20. The results in Fig. 2 also support th
fact that all the models forz.21, exceptz51, have the
same dynamical behavior ofb52/9, even though the esti
matedb value for z521 seemed to be somewhat smal
than 2/9. The sector~or initial-morphology! dependence is
checked for the models withz.21, but it is found that the
results in Figs. 1 and 2 are not varied by changing the ini
surface configuration. As mentioned in the introductory p
the QP models@4# have no sector~or initial-morphology-
dependent! problem, whereas theQ-mer models have the
problem@6,7#. Since the models considered here are dee
related to the 2P models, the models show no sector de
dence.

The scaling behaviors in Fig. 1 can be analytically und
stood from the partition function because the equilibriu
surface has no external bias. The partition function~2! can be
expanded as

Z5 (
$h(rW)%

~1/2!SF11 (
h5hmin

hmax

znh1•••1zLG , ~5!

where S5hmax2hmin11 and L5(hnh . Then in the limit
z→`,

Z5zL (
$h(rW)%

~1/2!S5zLZSF , ~6!

whereZSF is simply the partition function for the SF surfac
growth. Equation~6! thus implies that the models forz@1
have the same scaling behavior as the SF model. Fouzu
!1, Z in Eq. ~5! can be written as

Z. (
$h(rW)%

e2bSF11 (
h5hmin

hmax

znhG ~7!

and the most dominant~relevant! term in Z is ZSF . We thus
expect the SF scaling behavior foruzu!1. The simulation

FIG. 2. Plots of lnW against lnt for z520.5,0,0.5,0.9,1.1,1.5
for the equilibrium surfaces. The used system size isL5212. The
straight line denoted byb50.22 represents the relationW.t0.22.
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results and the analytic arguments in Eqs.~6! and ~7!
strongly support the following renormalization group~RG!
flows in the phase space ofz. The z51 fixed point for the
ordinary RSOS behavior is the unstable fixed point. Foz
.1, the RG flow is directed to thez5` fixed point, which
represents the scaling behavior governed by the parti
function ~6!, or coincidentally the SF behavior. Foruzu,1,
the RG flow is directed toz50, which represents the S
behavior itself@see Eq.~7!#. This analytic argument support
the phase diagram in which all of the phases forz>21,
except the singular pointz51, are the same phase witha
51/3 as the SF growth withz50. This theoretical argumen
based on the partition function explains the existence o
phase witha51/3 for z>21. However, the evolution dy-
namics, especially the resultsb.2/9 and zW.3/2, can
hardly be explained from the partition function itself, eve
though the SF model@5# has numerically been shown to hav
b.2/9 andzW.3/2. Further analytical study to explain th
common dynamical behaviorb.2/9 for models withz>
21 is left for future research.

Next, we consider nonequilibrium growing/eroding su
faces (pÞq). We run simulations forp51 in the system
sizesL525, . . . ,212. ae f f for z521,20.5,20.1 is shown
in the main figure of Fig. 3 and that forz50,0.5,1.5 is shown
in the inset of Fig. 3. As can be seen from Fig. 3,a for z
,0 is quite different from that forz>0. Forz>0, we esti-
mate thata.0.50(1), which are consistent with the resul
for the ordinary RSOS model@10#. However,a.1 is esti-
mated forz,0 as in the 2P~QP! model with z521 @4#.
Even for small negativez ~or z520.1), ae f f approaches 1
in the limit L→`, even though there exists a large correcti
to the a51 scaling behavior in systems with smallL. We
also investigated the time-dependent behavior ofW(t). For
z.0 we getb.0.32(1), which is the ordinary RSOS be
havior @10#. In contrast, the different time-dependent beha
ior of W is found as shown in Fig. 4. In Figs. 4~a!–4~c!, a
typical time evolution of the surface forz,0 in a simulation

FIG. 3. ae f f versus 1/L for the growing surfaces (p51) of the
model withz521,20.5,20.1. The inset shows the same plot f
z50,0.5,1.5. The data forz520.1 are taken from the system size
up to L5212 and other data are from the system sizes up toL
5210.
8-3
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sample is shown. At the initial stage of growth, the morph
ogy of the surface is like that in Fig. 4~a! as in the ordinary
RSOS model. But after some time, the valley bottom
formed and localized as in Fig. 4~b!. Then the grooved struc
ture, such as in Fig. 4~c!, eventually appears as in the 2
model @4#. The formation of the valley bottom and th
grooved structure is believed to have come from the mec
nism similar to the evenness constraint of the 2P model@4,6#

FIG. 4. ~a!–~c! Typical time evolution of the surfaces forz5
20.5 in a simulation sample. The used system size isL528. ~a!
The morphology at the initial stage of growth;~b! that around the
time at which a valley bottom is formed;~c! that after the fully
developed grooved is formed;~d! the time dependence ofW in the
early-time regime forz520.1.
d

e
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with z521. A sort of stochastic evenness constraint@6#
seems to be effective forz,0, even though the constrain
becomes weaker asz→02. This kind of the time-dependen
behavior can also be seen from the early-time behavior oW
as shown in Fig. 4~d!. Initially, W(t) follows the ordinary
power-law behavior withW(t).tb. After the time in which
the valley bottom is formed, a sort of unstable growth w
quite large value ofb occurs beforeW(t,L) becomes the
saturated valueWs(L). The growing~eroding! surfaces thus
have the phase transition~or the sudden crossover! at z50.
The transition, of course, occurs from the grooved ph
(a51) for 21<z,0 to the ordinary RSOS behavior (a
51/2) for z>0.

The growing~eroding! biases, except the effects from th
partition function, definitely have physical roles for the no
equilibrium growing/eroding (pÞq) surfaces. So it is hard
to understand the existence ofa51 phase forz,0 and the
ordinary RSOS phase forz>0 directly from the partition
function. An analytic understanding of these characteris
of nonequilibrium surfaces is also left for future research

In summary, we studied the scaling properties of t
growth model described by the Metropolis-type evoluti
rule based on the partition function~2!. For the equilibrium
surfaces, the scaling properties forz>21 are all one phase
with a51/3 andb50.22. For the growing~eroding! sur-
faces, there exists a phase transition atz50 from the
grooved phase (a51) to the ordinary RSOS behavior (a
51/2).
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